1. 基本情報

区分	生態系	担当者名	亀田 豊							
タイトル	Comparison of radioactive cesium contamination of lake water, bottom									
(英文)	sediment, plankton, and freshwater fish among lakes of Fukushima									
	Prefecture, Japan after the Fukushima fallout									
タイトル	フォールアウト後の福島県内湖沼における湖水、底質、プランクトン、淡水魚のセシウ									
(和文)	ム汚染の比較									
キーワード	Fukushima fallout, Lake Ha	ayama, Lak	e Akimoto, Lake Tagokura,							
	Piscivorous fish, Radiocesium contamination, Trophic level									
著者	Keishi Matsuda, Kaori Takagi, Atsushi Tomiya, Masahiro Enomoto, Jun-ichi									
	Tsuboi, Hideki Kaeriyama, Daisukue Ambe, Ken Fujimoto, Tsuneo Ono,									
	Kazuo Uchida, Takami Morita, Shoichiro Yamamoto									
文献	Fisheries Science, 81, 737-74	7, 2015								

(1) 対象地域

福島県葉山湖、秋元湖および田子倉湖

(2) 重要な図表

表 4: 湖水、底質およびプランクトン中の放射性セシウム平均濃度

有意検定は湖水については t-テスト、底質は Kruskal-Wallis テスト、プランクトンは分散分析で行った 異なる下文字は 5a%の棄却率で有意差を示す。2012,2013 年の検定は t-テストで行い、*は 5%棄却率における有意差を示す。

Table 4 Mean radiocesium (134 Cs + 137 Cs) concentrations of lake water, bottom sediment, and plankton for each lake

Sample	Lake	$\begin{array}{l} \text{Mean} \pm \text{SD}^{\text{A}} \text{ radiocesium concentration from} \\ 2012 \text{ to } 2013 \end{array}$	n^{B}	Mean \pm SD ^A radiocesium concentration in 2012 (x)	n^{B}	$\begin{aligned} \text{Mean} &\pm \text{SD}^{\text{A}} \text{radiocesium} \\ \text{concentration in 2013 (y)} \end{aligned}$	n^{B}	Loss of radiocesium concentration from 2012 to 2013: $(1 - y/x) \times 100$ (%)
Lake water (mBq/L)	Н	66.2 ± 27.4^{a}	5	89	2	51 ± 25	3	43
	A	24.5 ± 13.9^{b}	5	29	2	22 ± 8.3	3	25
	T	1.6 ± 0.4	1	1.6 ± 0.4	1	ND		
Bottom sediment (Bq/kg dry mass)	H	$17,340 \pm 8519^{a} (5914 \pm 3194 \text{Bq/kg wet mass})$	6	$24,189 \pm 5636$	3	$10,491 \pm 2987$	3	57 [*]
	A	$2357 \pm 2091 \ (881 \pm 875 \ \text{Bq/kg wet mass})$	6	2841 ± 3140	3	1874 ± 607	3	34
	T	301 ± 138^{b} (157 ± 63 Bq/kg wet mass)	6	191 ± 85	3	410 ± 66	3	-114^{*}
Plankton (Bq/kg dry mass)	H	$4295 \pm 2495 (162 \pm 141 \text{Bq/kg wet mass})$	4	4852 ± 78	1	4109 ± 3021	3	15
	A	$1383 \pm 1004 (9.2 \pm 6.6 \text{ Bq/kg wet mass})$	3			1383 ± 1004	3	
	T	25 (0.2 Bq/kg wet mass)	2			25	2	

Significant differences among lakes were examined by t test (lake water), Kruskal–Wallis test (bottom sediment), or one-way ANOVA (plankton). Different lower-case letters indicate significant (p < 0.05) difference among lakes

Significant difference between 2012 and 2013 was examined by t test. Asterisk for "Loss of radiocesium concentration from 2012 to 2013" indicates significant (p < 0.05) difference between x and y. These tests were conducted in cases where there were more than 2 samples in all groups

H Hayama, A Akimoto, T Tagokura

^A In case of n = 1, SD is counting error (1 sigma)

^B ND data excluded

図 2:2012~2013 年中に採取された環境サンブル中の放射性セシウム平均濃度と 2011 年 6 月 6 日及び 7 月 8 日の文部省調査での湖岸表層土壌(O-50mm)の濃度との関連性

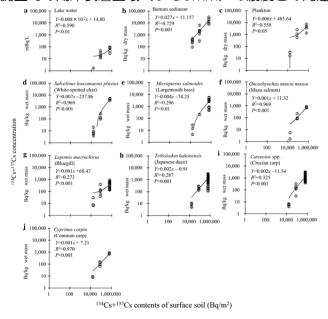


Fig. 2 Correlations between mean radiocesium concentrations (134 Cs + 137 Cs) of each lake sample taken during the study period (2012–2013) and those of surface soil taken at 0–50 mm depth from

each lake shore between 6 June and 8 July 2011 (MEXT [14]). Vertical bars indicate 1 SD. Solid lines show significant fit regression lines

2. 提言につながる情報

(1) モニタリングへの活用

放射性セシウムの長期的な変化を調査する場合、継続的な調査が重要であり、本論文でも明言されている。その理由として、やはり放射性セシウムのデータの代表性やデータの有する変動の幅が大きいためである。いかに時間的、空間的に代表的なデータの収集が重要であろう。

(2) 流出挙動・経路

本論文では、該当する内容の考察は考えられていない。

(3) 除染の際の留意点

本論文ではこの点に関し、特に論じられていない。

(4) 担当者のコメント

本論文では、福島県の3カ所の湖沼において、各種魚類、湖沼水、底質、プランクトンの放射性セシウム濃度について、高精度にかつ、大量のデータを長期間収集した、貴重な論文である。残念ながら、湖沼内における放射性セシウムの挙動に関する考察はない。湖沼水圏内におけるフォールアウト後の汚染状況を総括的に把握できる論文である。